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Abstract—A stochastic observation system model with random time delays between an arriving
observation and the factual state of a moving object is adapted to identify its motion parameters.
Equations for optimal Bayesian identification are given. A conditionally minimax nonlinear
filter (CMNF) is applied to solve the problem in practice. The design procedure of the CMNF,
including the choice of the filter structure, is discussed in detail on an example of autonomous
underwater vehicle (AUV) positioning based on observations of stationary acoustic beacons.
A computational experiment is carried out on a model close to practical needs using three
variants of the filter, namely, the typical approximation of the updating process, the method of
linear pseudomeasurements, and the geometric interpretation of angular measurements.
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1. INTRODUCTION

The theory of stochastic filtering provides methods and algorithms for solving various applied
problems of estimation and control of moving objects [1]. In turn, applications may be sources
of new formulations, models, and criteria, stimulating the improvement and development of the
theory. One example is the applied field of autonomous underwater vehicles (AUVs) [2]. The
peculiarities of the aquatic environment affect not only the nature and goals of the motion but also
measuring means. For instance, different measuring means can be used for AUV positioning [3];
however, they all involve common physical laws. They are acoustic sensors, i.e., their operation
depends on many factors, from water temperature to salinity and pressure [4]. As a result, data
on the state of the observed AUV arrive with a random delay. This factor is not considered in
the analogous problem of aircraft navigation because the high velocity of radio wave propagation
allows one to neglect it. Indeed, the models of radar surveillance systems assume that data on the
current position of an aircraft are acquired at the current time instant. However, the velocity of
acoustic wave propagation is not so high, so the delay may be quite large and cannot be neglected.
The stochastic dynamic observation system model with the delay factor of the acoustic signal was
proposed in [5] and supplemented in [6]. Formally, this model can be reduced to the unified rep-
resentation of a nonlinear stochastic observation system; as a result, it becomes possible to write
optimal Bayesian filtering relations for it [7] and apply well-known heuristic filtering methods,
including the extended Kalman filter [8], particle filters [9], and different modifications of sigma-
point filters [10]. Meanwhile, both the optimal filter and any heuristic estimates cannot be used
in practice even on model examples since the factor of a random time delay between an arriving
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observation and the factual state of a moving object is compensated via augmenting the state vec-
tor by a value proportional to the delay time and the measurement frequency. Under near-realistic
conditions, one obtains a huge dimension, with no prospect of handling it. The only effective tool
to cope with delays is given by Pugachev’s method of conditionally optimal filtering [11, 12] and its
development, Pankov’s conditionally minimax nonlinear filter (CMNF) [13]. This conclusion was
confirmed by calculations [5, 6]. Continuing to investigate the CMNF in the time-delay model, this
paper focuses on two issues. First, the quality of conditionally optimal filtering is largely deter-
mined by a reasonable choice of the filter structure. Universal recommendations [14] can strongly
lose to solutions considering the problem’s specifics. This fact was demonstrated, in particular,
in [5, 6], where the filter was successfully designed based on a simple geometric interpretation of
measurements. The same idea is employed below not for a simplified model example but for that
with real application content, and the results seem also good. However, such a variant of mea-
surements (with direct position determination by solving a geometric problem) still has limited
capabilities, and a more universal approach is needed here. Such an approach utilizes the linear
pseudomeasurement method proposed in [15] and successfully developed in [16]. The corresponding
results are presented in Section 4, including a stochastic observation system model describing the
AUV positioning process using the angular measurements of two acoustic beacons and variants for
choosing the CMNF structure that agree with the physical meaning of the problem. This example
shows how angular measurements can improve the positioning accuracy considering the time delay
of observations caused by the aquatic environment. The second issue concerns the traditional as-
sumption for stochastic observation systems that the state model of a moving object is known. In
practice, this assumption is incompletely valid, and the models are used with some errors. It is pos-
sible to compensate for the influence of such errors by including their model in the state equations.
Many problems and methods of this kind have been created in the theory of robust estimation [17].
Another alternative is to describe the model inaccuracies by parameters, estimate them, and use
the estimates together with the solution of the basic filtering problem. The corresponding meth-
ods belong to the theory of identification [18], regardless of whether this is possible and whether
these parameters are estimated in advance or simultaneously with the estimation of the current
position of the object. It seems rather natural to combine filtering and identification problems by
forming an observation system model within the Bayesian approach. This variant of the CMNF
with application to the AUV positioning problem is implemented below. Section 2 describes the
formal model of a stochastic system with random time delays of measurements and the unknown
parameters of the state model. In Section 3, we adapt the optimal filtering equations [5, 6] and the
equations for the CMNF parameters used for positioning in the numerical experiment to the case
of Bayesian parameter identification. In parallel with positioning, we identify the unknown motion
parameters determining the average constant velocity of the AUV. Hence, it becomes possible to
estimate the influence of the identification results of the motion model on the quality of solving
the (main) positioning problem and, when using only angular position measurements, assess the
fundamental possibility of estimating the motion velocity without its direct measurement, e.g., by
Doppler sensors.

2. MOTION PARAMETER IDENTIFICATION MODEL
BASED ON OBSERVATIONS WITH RANDOM DELAYS

The AUV motion and the set of measurements are described by a discrete stochastic dynamic
system with unknown parameters. By assumption, the maximum possible time delay of arriving
observations, T, is a priori given. Since the sound velocity in water can be supposed to be known,
this assumption is reduced to estimating the maximum distance between the meters and the AUV,
which should not be difficult. Denoting by t = 0 the initial positioning time instant, for the discrete
time variable t we have t = −T,−T + 1, . . . , 0, 1, . . . .
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AUV POSITIONING AND MOTION PARAMETER IDENTIFICATION 1151

The AUV position, defined by a vector xt = (x1t, . . . , xpt)
′ ∈ R

p (e.g., the coordinates
(x(t), y(t), z(t))′ and velocities (vx(t), vy(t), vz(t))

′ in an inertial reference frame linked to the Earth),
and a random vector μ = (μ1, . . . , μr)

′ ∈ R
r of unknown motion model parameters form the state

vector (x′t, μ′)′ ∈ R
p+r of the dynamic system. Throughout this paper, “′” indicates the transpose

of an appropriate vector or matrix. Let the distribution of μ be given.

The observation vector yt =
(
y1t, . . . , yqt

)′ ∈ R
q consists of measurements containing additive

errors and time delays. Each observation element yit has a particular shift described by a discrete
random variable τit with values from the set {0, 1, . . . , T}. The values τit are combined into the
vector τt =

(
τ1t, . . . , τqt

)′ ∈ R
q, which is a function of xt. Exactly, each observation element yit is

a measurement performed for the position xt−τit . Thus, the observation system has the form

xt = ϕt (xt−1, μ) + wt, x−T−1 = η,

yit = ψit

(
xt−τit

)
+ vit , i = 1, . . . , q,

τt = θt (xt) ,

(1)

where wt = (w1t, . . . , wpt)
′ ∈ R

p is a vector discrete white noise that models disturbances, η ∈ R
p

are initial conditions, and vt = (v1t, . . . , vqt)
′ ∈ R

q is a vector discrete white noise that models
measurement errors. The vectors η, μ, wt, and vt are independent in the aggregate, and the
known functions ϕt, ψt, and θt satisfy sufficient conditions for the existence of filtering, Bayesian,
and conditionally minimax estimates. These are typical conditions ensuring the existence of the
second moment for the state and observation vectors, e.g., the linear growth of the system functions
at infinity and the presence of the second moments for the disturbances and observation errors; see
Theorems 1 and 2 in [5].

In model (1), we can introduce a compound state vector including both the AUV coordinates
and the unknown random parameters of the motion model: (x′t, μ′

t)
′. Then the observation system

model takes the form

xt = ϕt (xt−1, μt−1) + wt, x−T−1 = η,

μt = μt−1, μ−T−1 = μ,

yt = ψt (xt−τt) + vt, τt = θt (xt) .

(2)

To make model (2) correct and usable as a formal representation of (1), we clarify that the

notation xt−τt is the vector
(
x′1t−τ1t

, . . . , x′pt−τqt

)′
of the AUV positions corresponding to the time

delay of each measurement included in the observation vector yt.

In accordance with the Bayesian interpretation of the identification problem, it is required to
specify a probability density for the initial condition vector (η′, μ′)′. This density can be written as

f0 (X−T−1,M) = fη (X−T−1) fμ(M), (3)

where X−T−1 ∈ R
p and M ∈ R

r are the arguments of the probability densities corresponding to
the random vectors η and μ, which have been supposed to be independent above.

Now, for the observation system (2), we can pose a filtering problem: it is required to estimate
the state (x′t, μ′

t)
′ based on the observations yt = (y′0, . . . , y′t)

′. Solving the filtering problem for the
compound state vector yields a solution for both the positioning problem (estimation of the current
position xt) and the parameter identification problem (estimation of the vector μ).

3. FILTERING ALGORITHMS

Note that in the problem under consideration, the optimal Bayesian filter can be described
by recurrence relations for the posterior probability density. Similar relations are well known for
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conventional discrete observation systems (without delays) [19]; they were generalized to the case
of time-delayed systems in [7]. Clearly, the same result holds in the problem to be solved. The

filter is written for the augmented position vector xt =
(
x′t−T , . . . , x

′
t−1, x

′
t

)′
because all possible

time delays need to be considered. For a less cumbersome notation, we simplify the time-delay
model by assuming the scalar value τt ∈ R

1 instead of the vector τt ∈ R
q. This happens in the

special case τ1t = . . . = τqt. In other words, all observers are located at approximately the same
distance from the AUV, e.g., when there is only one measuring complex.

It is possible to write the posterior probability density ρt = ρt
(
Xt,M

∣∣Y t
)
of the vector (x′

t, μ
′)′

with respect to the vector of all observations, yt, and the filtering estimates of the position
and parameters, x∗t and μ∗

t . For this purpose, for the sake of convenience, we denote by Xt =(
X ′

t−T , . . . ,X
′
t−1,X

′
t

)′
, M = (M1, . . . ,Mr)

′, and Y t = (Y ′
0 , . . . , Y

′
t )

′
the arguments of the posterior

density; they correspond to the vectors xt, μ, and yt, respectively. In addition, we employ the
unnormalized posterior density ρ̂t = ρ̂t

(
Xt,M

∣∣Y t
)
, so

ρt
(
Xt,M

∣∣∣Y t
)
=

ρ̂t
(
Xt,M

∣∣Y t
)∫

ρ̂t (Xt,M |Y t) dXtdM
.

Then we have [7]

ρ̂t
(
Xt,M

∣∣∣Y t
)
= fwt (Xt − ϕt (Xt−1,M))

×
T∑
i=0

I (θt (Xt) = i) fvt (Yt − ψt (Xt−i))

∫
ρt−1dXt−T−1,

(4)

where fwt(·) is the probability density of the disturbances wt and fvt(·) is the probability density
of the observation errors. Equation (4) is solved with the initial condition

ρ−1

(
X−1,M

∣∣∣Y −1
)
= ρ−1 (X−1,M) = ρ−1 (X−T−1, . . . ,X−1,M)

= f0 (X−T−1,M) fw−T
(X−T − ϕ−T (X−T−1,M)) . . . fw−1 (X−1 − ϕ−1 (X−2,M)) .

The Bayesian estimates x∗t and μ∗
t are obtained by integration:(

(x∗
t )

′ , (μ∗
t )

′)′
=

∫ (
X′

t,M
′)′ ρt (

Xt,M
∣∣∣Y t

)
dXtdM, x∗

t =
(
. . . , (x∗t )

′)′
.

According to the last equality, the current position estimate x∗t enters as the last subvector in x∗
t ;

also, the estimates of the past AUV positions have to be computed, although they are unnecessary.

The main conclusion from these considerations is that, despite the fundamental possibility of
obtaining the optimal filtering and Bayesian identification estimates, we cannot reckon on their
practical use. In the AUV positioning model described below, implementing calculations by for-
mula (4) would have to deal with the dimensions p = 3, r = 3, q = 4, and T = 15, which gives the
augmented vector Xt of dimension 45. For such dimensions, it seems at least rash to expect success
in computing integrals with good accuracy under the real-time arrival of observations yt.

Thus, a different approach to filtering is needed here to obtain a practically implementable
estimate, albeit not optimal, but with good accuracy. Among many known approaches to subopti-
mal filtering, the concept of conditionally optimal filtering [11, 12] allows considering the specifics
of the model of random observation delays without making cardinal changes. The possibility to
flexibly change the filter structure based on the peculiarities of a particular observation system,
originally envisaged by this concept, will make it possible to consider both the time delays and
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AUV POSITIONING AND MOTION PARAMETER IDENTIFICATION 1153

the physical laws determining the AUV motion and the operation of the sensors. The minimax
explanation of the properties of this filter and the idea to calculate its parameters approximately by
simulation [13] give grounds for obtaining good-quality estimates both in the positioning problem
and in the motion parameter identification problem as the implementability of the corresponding
algorithms with reasonable computational cost is its inherent property.

Following [13] and using the notations of this paper, we write the CMNF estimate
(
(x̂t)

′ , (μ̂t)
′)′

of the position xt and the random motion model parameters μ based on the observations yt in the
prediction-correction form

x̂t = x̃t +Δx̂t, μ̂t = μ̂t−1 +Δμ̂t.

The position prediction x̃t is calculated using the basic prediction function ξt(X,M); the cor-
rection, using the basic correction function ζt(X,Y ), X ∈ R

p, M ∈ R
r, Y ∈ R

q. The prediction x̃t
is calculated as a function of ξt = ξt (x̂t−1, μ̂t−1) whereas the correction (Δx̂′t,Δμ̂′

t)
′ as a function

of ζt = ζt (x̃t, yt). Note that the correction does not involve the parameter estimate μ̂t−1 (no argu-
ment M), which is explained by the absence of the parameters in the observation function.

The functions implementing x̃t and Δx̂t are chosen linear so that

x̃t = Ftξt (x̂t−1, μ̂t−1) + ft,(
x̂t
μ̂t

)
=

(
x̃t

μ̂t−1

)
+Htζt (x̃t, yt) + ht,

(5)

where

Ft = cov (xt, ξt) cov
+ (ξt, ξt) , ft = E {xt} − FtE {ξt} ,

Ht = cov

((
xt
μ

)
−

(
x̃t

μ̂t−1

)
, ζt

)
cov+ (ζt, ζt) , ht = −HtE {ζt} .

(6)

Formulas (6) have the following notations: E {x} is the expectation of the random vector x,
cov(x, y) is the covariance of x and y, and “+” is the Moore–Penrose pseudoinverse [20]. In addition,
the position prediction x̃t and the estimates x̂t and μ̂t are unbiased with the estimation error
covariances

K̃t = cov (xt − x̃t, xt − x̃t) = cov (xt, xt)− Ftcov (ξt, xt) ,

K̂x
t = cov (xt − x̂t, xt − x̂t) = K̃t −ΔK̂

x

t , K̃0 = cov(η, η),

K̂μ
t = cov (μ− μ̂t, μ− μ̂t) = K̂μ

t−1 −ΔK̂
μ

t , K̃0 = cov(μ, μ),

(7)

where the matrices ΔK̂
x

t and ΔK̂
μ

t are the upper and lower diagonal blocks of the matrix

Htcov

(
ζt,

(
xt
μ

)
−

(
x̃t

μ̂t−1

))
=

(
ΔK̂

x

t . . .

. . . ΔK̂
μ

t

)
.

The linear transformations (5) of the basic prediction ξt and correction ζt have minimax jus-
tification as the best estimates on the classes of all probability distributions with known mean
and covariance [13]. In practical calculations, Monte Carlo estimates of the filter coefficients Ft,
ft, Ht, and ht are used instead of their analytical values. In other words, E {x} in (6) is replaced
by E {x} = 1

N

∑N
i=1 xi, where {xi}Ni=1 are the sample values of x simulated on a computer. Finally,

sufficient conditions for the existence of the estimate (5) with respect to model (2) were formulated
in [5, 6].

Thus, to solve the AUV positioning problem, it is required to specify motion and observation
conditions and design the CMNF by selecting the basic prediction ξt and correction ζt.
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4. AUV POSITIONING USING STATIONARY ACOUSTIC BEACONS

4.1. Motion Model

As has already been mentioned, the movement of an object in a water environment is the target
(and currently single) application of the considered model of the system with random time delays of
observations. Water acts as a natural source of delays in measurements made by various acoustic
sensors. Different problems can be formulated using such measurements, including target goal-
setting and intelligent target tracking, vehicle position estimation and prediction, motion model
identification, individual and group movement planning, inertial navigation and visual positioning,
and others. To demonstrate the flexibility and efficiency of the CMNF, we select the positioning
problem of an AUV interacting with two stationary acoustic beacons. The observation model
and possible approaches to solving the estimation problem in this formulation were discussed in
detail in [21–23]. Here, this model is supplemented by introducing random time delays for the
measurements of each beacon and inaccurate a priori information on the motion parameters, namely,
the average velocity vector of the AUV. Thus, it is possible to analyze the standard application of
the CMNF for solving the state filtering problem (determination of the AUV position) as well as
positioning together with parameter identification.

The AUV motion model assumes that on average the vehicle moves at a constant velocity, while
the real velocity is affected by uncontrolled random factors. Their influence leads to independent
deviations of the velocity, which remains constant on sampling intervals (between successive mea-
surements) and changes at each next time instant. The same in-plane motion was used in [5] but
under the assumption of known motion parameters. Here, we will identify them.

The AUV motion is described in the Cartesian reference frame Oxyz; its choice will be dis-
cussed below. The typical notations x(t), y(t), and z(t) are employed for the motion trajectory
coordinates; they are measured in kilometers (km). Note the distinction between these notations
and xt, yt used above for the observation system in the general model (1). AUV positioning starts
at the time instant t = 0 and is performed at discrete time instants with steps δ: δ, 2δ, . . . , tδ, . . . .
The AUV motion starts at the time instant −Tδ, i.e., t = −T , so a measurement with any permis-
sible delay τ0i � T can be realized at the time instant t = 0; therefore, the AUV initial position
is given by the vector (x(−T − 1), y(−T − 1), x(−T − 1))′. In the calculations carried out, this
vector is supposed to obey the Gaussian distribution with the mean (−1,−1, 1)′ and the covari-
ance diag

{
0.12; 0.12; 0.12

}
. By assumption, the AUV moves at an unknown constant velocity

(vx, vy, vz)
′, which is affected by uncontrolled factors. The absence of accurate velocity infor-

mation is modeled by making the vector (vx, vy, vz)
′ Gaussian with the mean E {vx} = −25 km/h,

E {vy} = −12.5 km/h, E {vz} = −1 km/h and the covariance diag
{
52, 52, 1

}
. Thus, each trajectory

has a particular “target” motion (direction and velocity) and, along with positioning (estimation
of the position (x(t), y(t), z(t))′), it is required to identify the parameters of this motion given by
the realization of the vector (vx, vy, vz)

′ .
The uncontrolled random factors affecting the velocity of motion are modeled by additive distur-

bances wx(t), wy(t), and wz(t); by assumption, the vector (wx(t), wy(t), wz(t))
′ obeys the Gaussian

distribution with the mean (0, 0, 0)′ and the covariance diag
{
252, 252, 252, 252

}
. Thus, we have

the state vector (x′t, μ′)′ = (x(t), y(t), z(t), vx, vy, vz) ∈ R
3+3 and the following dynamics:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = x(t− 1) + δ(vx + wx(t)),

y(t) = y(t− 1) + δ(vy + wy(t)),

z(t) = z(t− 1) + δ(vz + wz(t)),

t = −T,−T + 1, . . . , 0, 1, . . . .

(8)

For the other calculation parameters, as in [5], we set a sampling step of δ = 0.0001 hours (h) for
observations (i.e., about three measurements per second (s); positioning is performed for 1000 sam-
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pling steps, t = −T, . . . , 1000, (i.e., 6 minutes (min) of motion). During this time, the AUV traverses
an average distance of about 2.5–3 km, with the maximum range to the farther of the two beacons
being 8 km. Accordingly, the maximum time delay is supposed to be T = 15, constituting 0.0015 h
or 5.4 s. This assumption is based on the sound velocity in water vs = 5400 km/h (1500 m/s).

4.2. Measuring Complex Model

Observers are two stationary acoustic beacons (passive acoustic devices for estimating the di-
rection of arrival (DOA) [24]) installed in advance. Let the first (F , f irst) and second (S, second)
beacons have the coordinates (XF , YF , ZF ) and (XS , YS , ZS), respectively. Following the model
proposed in [22], observations of the positioned AUV with the unknown coordinates (X, Y,Z) are
the directions to each of the beacons, which yield two angles⎧⎪⎪⎪⎨⎪⎪⎪⎩

tanϕF =
YF − Y

XF −X
, tanϕS =

YS − Y

XS −X
,

tan λF =
ZF − Z

|XF −X| cosϕF , tan λS =
ZS − Z

|XS −X| cosϕS .
(9)

Figure 1 shows the geometric interpretation of the measured angles, particularly how the angles
ϕF , ϕS , λF , and λS can be counted to determine the mutual position of the beacon and the
positioned AUV in order to correctly find the vehicle’s position based on the available tangent
measurements and consider the possible crossing of the lines XF −X = 0 and XS −X = 0 when
some measurements cannot be used. In this figure, positions 1-2-3-4 of the AUV (X1, Y1, Z1)
and the beacon (XM, YM, ZM) correspond to possible combinations of the coordinates X1 < XM,
X1 > XM, Y1 < YM, Y1 > YM, and the angles ϕ and λ are counted so that relation (9) holds in
all variants.

In the experiment described below, assuming the cooperative scenario (the beacons and the
AUV act jointly to fulfill their common task), it is possible to simplify the relations slightly by

Fig. 1. Possible mutual arrangement of the AUV and beacons.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 12 2024
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Fig. 2. Mutual arrangement of the AUV and two beacons in the experiment.

choosing a reference frame so that (XF , YF , ZF ) = (0, YF , h) and (XS , YS , ZS) = (XS , 0, h), where
h is the depth at the location of the beacons (Fig. 2). Also, we may assume that XF > 0, YF > 0
and the origin is located so that X < 0, Y < 0 throughout the entire motion time. Then all the
measured angles ϕF , ϕS , λF , and λS will vary in the range

(
0, π2

)
, so cosϕF = 1

(1+tan2 ϕF )1/2
and

cosϕS = 1

(1+tan2 ϕS)1/2
. Thus, we arrive at the following relations of the measurements instead

of (9): ⎧⎪⎪⎪⎨⎪⎪⎪⎩
tanϕF =

Y − YF
X

, tanϕS =
Y

X −XS
,

tan λF =
Z − h

X
cosϕF , tanλS =

Z − h

X −XS
cosϕS .

(10)

In the calculations carried out, the coordinates of the beacons are given by YF = 1 km and
XS = 2 km, the depth is h = 2 km. Accordingly, with the expected initial position (−1,−1, 1)′

and average velocity (−25;−12.5;−1)′ of the AUV chosen above, the vehicle will move away from
both beacons and maintain negative coordinates x(t), y(t) and positive coordinates z(t) on average
during 6 min of its positioning. Increasing the distance to the observers means increasing the values
taken by the time delay τt.

Therefore, it remains to consider the measurement errors in (10). According to model (1),
they are additive, so the factual model of the measuring complex without time delays in arriving
observations has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1t =
y(t)− YF

x(t)
+ v1(t), y2t =

z(t)− h

x(t)

1

(1 + tan2 ϕF (t))
1/2

+ v2(t),

y3t =
y(t)

x(t)−XS
+ v3(t), y4t =

z(t)− h

x(t)−XS
1

(1 + tan2 ϕS(t))
1/2

+ v4(t),

tanϕF (t) =
y(t)− YF

x(t)
, tanϕS(t) =

y(t)

x(t)−XS
,

(11)

where yt = (y1t, y2t, y3t, y4t)
′ is the vector of the measured angular directions tanϕF , tanλF , tanϕS ,

and tanλS ; the AUV coordinates x(t), y(t), and z(t) are given by model (8), and the vector
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(v1(t), v2(t), v3(t), v4(t))
′ of the additive measurement errors obeys the Gaussian distribution with

the mean (0, 0, 0, 0)′ and the covariance diag
{
(0, 01)2, (0, 01)2, (0, 01)2 , (0, 01)2

}
. In the described

experiment, the accuracy characteristics of the simulated acoustic sensors are chosen so that differ-
ences in the estimates can be visualized while maintaining an acceptable quality of all algorithms.
The relative accuracy of real devices was discussed in [25].

To consider the observation delays τt in (11), we define two random functions τF (t) and τS(t),
which will model the acoustic signal delay in time cycles, i.e., in the sampling steps δ, under the
constant sound velocity vs (see the assumption above). Note that for the problem under study,
this simplified assumption is sufficient. In practice, it can be replaced without much difficulty by
a more precise relation, e.g., the value obtained using the algorithm [26] or other simpler approxi-
mations [27]. Knowing the AUV current position (x(t), y(t), z(t))′, we calculate the ranges to the
beacons located at the points (0, YF , h) and (XS , 0, h), and the delays τF (t) and τS(t) ∈ {0, 1, . . . , T}
in time units of the motion model (8):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τF (t) = min

⎧⎨⎩T,

⎡⎣
√
(x(t))2 + (y(t)− YF )2 + (z(t)− h)2

(δvs)

⎤⎦⎫⎬⎭ ,

τS(t) = min

⎧⎨⎩T,

⎡⎣
√
(x(t)−XS)2 + (y(t))2 + (z(t)− h)2

(δvs)

⎤⎦⎫⎬⎭ .

(12)

In (12) we use the notation [x] for the floor function of x and the minimum to make the delays
formally correspond to the model (1) and not exceed the given threshold T . In the calculations,
T = 15 (large enough) and this minimum constraint was never activated on the simulated trajec-
tories.

Thus, the observation model takes the final form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1t =
x2t−τF (t) − YF

x1t−τF (t)
+ v1(t), y2t =

x3t−τF (t) − h

x1t−τF (t)

1

(1 + tan2 ϕF (t− τF (t)))
1/2

+ v2(t),

y3t =
x2t−τS(t)

x1t−τS(t) −XS
+ v3(t), y4t =

x3t−τS(t) − h

x1t−τS (t)

1

(1 + tan2 ϕS(t− τS(t)))
1/2

+ v4(t),

tanϕF (t) =
x2t − YF

x1t
, tanϕS(t) =

x2t
x1t −XS

.

(13)

To reduce the delay time in (13) to the form of the original model (1), in which τt ∈ R
4, we have

to use (12) and let τ1t = τ2t = τF (t) and τ3t = τ4t = τS(t).

4.3. CMNF Design

The filter design procedure consists in selecting its structural functions ξt, ζt and carrying out
computer simulation to calculate the coefficients by formulas (6) and determine the accuracy by
formulas (7). For simplicity, we will not introduce separate notations for the CMNF estimates
corresponding to different variants of the structural functions, all estimates are indicated in the
same way: x̂t, μ̂t, like the predictions x̃t. The particular structure of the filter is specified by its
name (typical, geometric, or pseudomeasurements).

The three filter variants proposed here involve the basic prediction due to system (8), i.e.,
ξt ∈ R3, t = 0, 1, . . . , and have the form

ξ1t = X1 + δM1, ξ2t = X2 + δM2, ξ3t = X3 + δM3. (14)
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The motion equations (8) are linear, which does not affect the presence of parameters to be
identified, so the basic prediction (14) is used in all CMNF variants and it makes sense to discuss
only the correction process.

In the first variant of the filter, called typical , the basic correction is given by the observation
residual adjusted by the estimate of the observation delay, i.e., ζt ∈ R

4, t = 0, 1, . . . . It has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1t = Y1 − X2 − YF
X1

, ζ2t = Y2 − X3 − h

X1

1

(1 + tan2 ϕ̃F )
1/2

,

tan ϕ̃F =
X2 − YF

X1
, (X1,X2,X3)

′ = x̃t−τ̂F (t),

ζ3t = Y3 − X2

X1 −XS
, ζ4t = Y4 − X3 − h

X1

1

(1 + tan2 ϕ̃S)
1/2

,

tan ϕ̃S =
X2

X1 −XS
, (X1,X2,X3)

′ = x̃t−τ̂S(t),

τ̂F (t) = min

⎧⎨⎩T,

⎡⎣
√
(X1)

2 + (X2 − YF )2 + (X3 − h)2

(δvs)

⎤⎦⎫⎬⎭ (X1,X2,X3)
′ = x̃t,

τ̂S(t) = min

⎧⎨⎩T,

⎡⎣
√
(X1 −XS)2 + (X2)

2 + (X3 − h)2

(δvs)

⎤⎦⎫⎬⎭ (X1,X2,X3)
′ = x̃t.

(15)

Note that to form the residual, the prediction-related argument of the basic correction ζt must
contain not only the last position prediction x̃t calculated using (5) but also all previous ones
x̃t−1, . . . , x̃t−T since the time delay estimates τ̂F (t) and τ̂S(t) in (15) may take any value from 0
to T . The prediction shift is needed to determine the residual from the estimate of the state
associated with the current observation yt, i.e., from the delayed state. This state can be estimated
by the values τ̂F (t) and τ̂S(t) for the first and second pair of the measured angles, respectively.
In this case, the delay estimates can be calculated using the current position prediction x̃t since the
AUV velocity is much less than the sound velocity, so the range to the AUV during the “delivery”
time of the measurement (and hence this time) will not change significantly.

The second variant of the CMNF correction employs the method of pseudomeasurements [15] as
follows. Clearly, the relations for the measured angles can be easily transformed from the original
geometric relations (10) into linear combinations of the coordinates to be determined:⎧⎪⎨⎪⎩

YF
tanϕF

=
Y

tanϕF
−X, h

cosϕF
tan λF

= Z
cosϕF
tanλF

−X,

XS tanϕS = X tanϕS − Y, h cosϕS −XS tan λS = Z cosϕS −X tan λS .

Applying similar transformations to (11) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YF
y1t

=
y(t)

y1t
− x(t) +

x(t)

y1t
v1(t),

h

(1 + tan2 ϕF (t))
1/2

y2t
=

z(t)

(1 + tan2 ϕF (t))
1/2

y2t
− x(t) +

x(t)

y2t
v2(t),

XSy3t = x(t)y3t − y(t)− (x(t)−XS) v3(t),

h

(1 + tan2 ϕS(t))
1/2

−XSy4t =
z(t)

(1 + tan2 ϕS(t))
1/2

− x(t)y4t + (x(t)−XS) v4(t).

(16)
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Finally, the precise values of tanϕF (t) and tanϕS(t) in (16) are unknown and have to be replaced
by the corresponding observations y1t and y3t. As a result, from (16) we arrive at the approximate
relations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YF
y1t

=
y(t)

y1t
− x(t) +

x(t)

y1t
v1(t),

h(
1 + (y1t)

2
)1/2

y2t

=
z(t)(

1 + (y1t)
2
)1/2

y2t

− x(t) +
x(t)

y2t
v2(t),

XSy3t = x(t)y3t − y(t)− (x(t)−XS) v3(t),
h(

1 + (y3t)
2
)1/2

−XSy4t =
z(t)(

1 + (y3t)
2
)1/2

− x(t)y4t + (x(t)−XS) v4(t).

(17)

Following the method of pseudomeasurements, system (17) is used to write the filter; in par-
ticular, the left-hand sides are used as new observations. The reason is that the right-hand sides
contain linear combinations of the estimated position x(t), y(t), and z(t), which gives hope for a
good performance of suboptimal Kalman filters, first of all, the extended Kalman filter (EKF) [8].
Indeed, this property is very attractive: when writing the EKF, there is no need to calculate the
derivatives of the measuring functions (ψt in model (1)).

For the designed CMNF, this approach provides the basic correction in the form of the obser-
vation residual (17), i.e., ζt ∈ R

4 given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1t =
YF
Y1

− X2

Y1
+X1, ζ2t =

h−X3(
1 + (Y1)

2
)1/2

Y2

+X1,

(X1,X2,X3)
′ = x̃t−τ̂F (t),

ζ3t = XSY3 −X1Y3 +X2, ζ4t =
h−X3(

1 + (Y3)
2
)1/2

−XSY4 +X1Y4,

(X1,X2,X3)
′ = x̃t−τ̂S(t).

(18)

In contrast to the correction term of the conventional EKF, the ultimate formula for ζt (18)
incorporates, as the correction (15) of the typical CMNF, the observation delays with the same
estimates τ̂F (t) and τ̂S(t).

Finally, the third structure for the CMNF is determined from geometric considerations, and
the corresponding correction is called geometric. Again we use (10) under the assumption of no
measurement errors. These relations can be interpreted as four joint equations for determining the
three AUV coordinates X, Y,Z. Although the geometric problem in Fig. 1 has one solution (the
surely intersecting acoustic ray lines of two beacons), system (10) can be formally solved in four
ways. By combining the quantities measured by both beacons into the vector (Y1, Y2, Y3, Y4)

′ =
(tanϕF , tanλF , tanϕS , tan λS)′, from (10) we obtain the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y1 =

Y − YF
X

, Y2 =
Z − h

X

1(
1 + (Y1)

2
)1/2

,

Y3 =
Y

X −XS
, Y 4 =

Z − h

X −XS
1(

1 + (Y3)
2
)1/2

.
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Its solution X,Y,Z satisfies each of the following twelve equalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
YF + Y3XS
Y3 − Y1

,

Y =
Y3 (YF + Y1XS)

Y3 − Y1
,

Z = h+ Y2
YF + Y3XS
Y3 − y1

(
1 + (Y1)

2
)1/2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
YF + Y3XS
Y3 − Y1

,

Y =
Y3 (YF + Y1XS)

Y3 − Y1
,

Z = h+ Y4

(
YF + Y3XS
Y3 − Y1

−XS
) (

1 + (Y3)
2
)1/2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
Y4XS

Y4 − Y2

(
1+(Y1)

2

1+(Y3)
2

)1/2
,

Y =
Y1Y4XS

Y4 − Y2

(
1+(Y1)

2

1+(Y3)
2

)1/2
+ YF ,

Z = h+
Y2Y4XS

Y4

(1+(Y1)
2)

1/2 − Y2

(1+(Y3)
2)

1/2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
Y4XS

Y4 − Y2

(
1+(Y1)

2

1+(Y3)
2

)1/2
,

Y =
Y2Y3XS

Y4

(
1+(Y3)

2

1+(Y1)
2

)1/2
− Y2

,

Z = h+
Y2Y4XS

Y4

(1+(Y1)
2)

1/2 − Y2

(1+(Y3)
2)

1/2

.

Excluding the identical ones, we arrive at eight equalities based on the four measurements
Y1, Y2, Y3, Y4. They can be used as the basic CMNF correction ζt ∈ R

8 of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1t = X1 − YF + Y3XS
Y3 − Y1

, ζ3t = X3 − h− Y2
YF + Y3XS
Y3 − Y1

(
1 + (Y1)

2
)1/2

,

ζ2t = X2 − Y3 (YF + Y1XS)
Y3 − Y1

, ζ4t = X3 − h− Y4

(
YF + Y3XS
Y3 − Y1

−XS
) (

1 + (Y3)
2
)1/2

,

ζ5t = X1 − Y4XS

Y4 − Y2

(
1+(Y1)

2

1+(Y3)
2

)1/2
, ζ7t = X2 − Y2Y3XS

Y4

(
1+(Y3)

2

1+(Y1)
2

)1/2
− Y2

,

ζ6t = X2 − Y1Y4XS

Y4 − Y2

(
1+(Y1)

2

1+(Y3)
2

)1/2
− YF , ζ8t = X3 − h− Y2Y4XS

Y4

(1+(Y1)
2)

1/2 − Y2

(1+(Y3)
2)

1/2

,

(X1,X2,X3)
′ = x̃t−max(τ̂F (t),τ̂S (t)), Y1(2) = y1(2)t−max(τ̂F (t), τ̂S(t))+τ̂F (t)

,

Y3(4) = y3(4)t−max(τ̂F (t), τ̂S(t))+τ̂S(t)
.

(19)

Here, the time delay estimates τ̂F (t) and τ̂S(t) are calculated by analogy with the two previous
variants of correction but used in a slightly more complicated way. Since the geometric interpreta-
tion “mixes” measurements from different beacons, the delays are mixed as well; therefore, both the
prediction and the measurements must be shifted back for referring to the same time instant. For
the prediction, this is the shift by the larger of the values τ̂F (t) or τ̂S(t); for the observations, the
shift by the difference |τ̂F (t)− τ̂S(t)| toward the earlier measurement. (Recall that the measure-
ments yit in (19) have been already shifted by τF (t) or τS(t) according to model (13).) Thus, the
current (most “fresh”) observations will be used only halfway. This “damage” is in the interest of
synchronizing the measurements. In fact, of course, we introduce no damage at all: the unused part
of the observations will be employed very quickly after the desynchronization time |τF (t)− τS(t)|.

In the case of more beacons (three, four, etc. acoustic sensors), the number of equations (19)
grows exponentially. So formally scaling the geometric correction to a larger number of observers
may lead to an unacceptable computing cost due to the implementation complexity instead of
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potentially improving the positioning quality. However, we hypothesize that there is no need
to use all possible combinations of measurements, being limited to only some of them. In this
case, it will be reasonable to employ all available sensors, no matter which pairs are involved in
the correction. The success of the pseudomeasurement filter demonstrated in the next section
indirectly confirms this hypothesis. Nevertheless, despite the simplicity of the geometric problem,
the geometric variant of the correction procedure yields the best CMNF structure for solving the
AUV positioning problem.

5. NUMERICAL EXPERIMENTS

To design the CMNF by the Monte Carlo method and analyze its quality, we simulated two
independent samples of N = 10000 trajectories. On the first sample, the filter parameters (6)
and (7) were calculated for each of the three correction structures proposed. Note that although
relations (7) are not directly required to compute the filtering estimate, the values of K̂t are
useful to know because they express the theoretical accuracy of the filter. On the second sample,
we analyzed the real quality of the filtering estimate x̂t = (x̂(t), ŷ(t), ẑ(t))′ and the identification
estimate μ̂t = (v̂x(t), v̂y(t), v̂z(t))

′. The estimation accuracy was determined by the mean square
deviations of the estimation errors, denoted by σx̂(t), σŷ(t), σẑ(t) (indicated in meters in the figures)
and σv̂x(t), σv̂y(t), σv̂z(t) (km/h) and calculated by the Monte Carlo method on the second sample.

Thus, it is necessary to examine both the absolute values of these quantities (in particular, compare
them with those calculated in the model without the time delays) and the difference between them

Fig. 3. AUV trajectories: (a) curves 1–3 correspond to the positions x(t), y(t), and z(t), whereas
curves 4–6 to the estimates x̂(t), ŷ(t), and ẑ(t); (b) curves 1 and 2 correspond to the time delays
τF (t) and τS(t); (c) curves 1–3 correspond to the velocities vx, vy , and vz, whereas curves 4–6 to the
estimates v̂x(t), v̂y(t), and v̂z(t); (d) curve 1 correspond to the AUV positions (x(t), y(t)) , whereas
curve 2 to the estimates (x̂(t), ŷ(t)) on the trajectories.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 12 2024



1162 BOSOV

Fig. 4. Mean square deviations of the filters: (a) geometrical, (b) pseudomeasurements, and (c) typical.

Curves 1–6 correspond to
(
K̂t

)1/2

11
,
(
K̂t

)1/2

22
,
(
K̂t

)1/2

33
, σx̂(t), σŷ(t), and σẑ(t).

and the corresponding diagonal elements of K̂t in order to assess the practical realization of the
theoretical properties of the CMNF in the case of its computer simulations-based design.

In Fig. 3, the experiment is illustrated with examples of characteristic position trajectories,
time delay, filtering estimates, and parameter identification estimates. In Fig. 3a, one graph
shows the coordinates of one AUV trajectory x(t), y(t), z(t) and the corresponding CMNF esti-
mate x̂(t), ŷ(t), ẑ(t); in Fig. 3b, the time delays τF (t) and τS(t) for the first and second beacons
on the same AUV trajectory; in Fig. 3c, the estimates v̂x(t), v̂y(t), v̂z(t) and the exact values of
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Fig. 5. Mean square deviations of the filters: (a) geometrical, (b) pseudomeasurements, and (c) typical.

Curves 1–6 correspond to
(
K̂t

)1/2

44
,
(
K̂t

)1/2

55
,
(
K̂t

)1/2

66
, σv̂x(t), σv̂y (t), and σv̂z (t).

the velocities vx, vy, vz; in Fig. 3d, several AUV trajectories in projection onto the Oxy plane. The
CMNF estimates correspond to the geometric structure function. Although there exists a distinc-
tion in the filtering and identification estimates for different CMNF structures, it seems impossible
to visualize this distinction on graphs. Therefore, numerical data are presented below to analyze
the performance in detail.
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Comparison of the estimation quality

Filter σ
(1)
x̂ /σ

(2)
x̂ σ

(1)
ŷ /σ

(2)
ŷ σ

(1)
ẑ /σ

(2)
ẑ σ

(1)
v̂x

/σ
(2)
v̂x

σ
(1)
v̂y

/σ
(2)
v̂y

σ
(1)
v̂z

/σ
(2)
ẑx

T = 15, delay 54 s, unknown vx, vy, and vz

Geometric 13.80/14.22 13.93/14.32 11.61/11.77 0.68/0.99 0.67/0.97 0.49/0.79

Pseudomeasurements 14.36/14.60 16.54/16.83 12.60/12.70 0.76/0.91 0.75/0.89 0.56/0.72

Typical 15.22/4300 16.38/3368 12.50/1117 0.76/88 0.75/96 0.57/17

T = 0, delay 0 s, unknown vx, vy, and vz

Geometric 11.27/11.62 11.45/11.78 8.81/8.92 0.67/1.00 0.66/0.98 0.48/0.80

Pseudomeasurements 11.19/11.36 11.49/11.65 8.87/8.93 0.75/0.92 0.73/0.89 0.55/0.72

Typical 11.09/11.25 11.45/11.61 8.81/8.86 0.74/0.92 0.73/0.89 0.55/0.72

T = 15, delay 54 s, unknown vx = E {vx}, vy = E {vy}, and vz = E {vz}
Geometric 13.05/13.23 13.38/13.54 11.48/11.56 — — —

Pseudomeasurements 13.56/13.64 15.38/15.49 12.37/12.42 — — —

Typical 13.66/45.81 15.39/32.22 12.33/22.09 — — —

T = 0, delay 0 s, known vx = E {vx}, vy = E {vy}, and vz = E {vz}
Geometric 10.66/11.25 11.11/11.25 8.71/8.77 — — —

Pseudomeasurements 10.66/10.74 11.14/11.22 8.74/8.77 — — —

Typical 10.65/10.72 11.13/11.21 8.71/8.75 — — —

The next issue—the estimation accuracy—is illustrated in Figs. 4 and 5. Figures 4a–4c show the
deviations σx̂(t), σŷ(t), σŷ(t), and σẑ(t) and, for comparison, the corresponding diagonal elements

of the theoretical covariance K̂t of the estimation error. Figures 5a–5c present the similar char-
acteristics σv̂x(t), σv̂y (t), and σv̂z(t) for the identified velocities. Each figure contains three graphs

corresponding to the three variants of the CMNF (geometric, pseudomeasurements, and typical).

Assessing these graphs visually, we state that the first two CMNF variants are successful in
the positioning task. A precise comparison requires numerical indicators, which are given below.
Also, the graphs confirm the fundamental possibility of velocity identification by these filters. The
values characterizing the quality of identification are presented below. Obviously, the typical filter
is able neither to position the AUV nor to identify the average velocity of motion. The discrepancy
between the theoretical accuracy determined by the matrix K̂t and the real values of the deviations
σx̂(t), σŷ(t), σẑ(t), σv̂x(t), σv̂y (t), and σv̂z(t) calculated on the second sample is too large. The reason
consists in an insufficient sample size used for filter design and can be eliminated by significantly
increasing N . However, in this case, the calculations become rather resource-intensive. It would
make sense to consume computational resources only without the advantages of the other two
CMNF structures, which are slightly more difficult to implement but much more efficient.

To conclude the experiment, it is necessary to characterize the real difference of the successful
CMNF structures, the effect of the model with time delay on the quality of estimation, and the
presence of identifiable parameters. For this purpose, we carried out calculations with the models
in which τF(t) = τS(t) = 0, and the models in which vx = E {vx}, vy = E {vy}, vz = E {vz}. The
choice of the model without the time delay for comparison is clear; however, the assumption of
a known constant velocity of the AUV on each trajectory may seem redundant. In fact, if the
velocities are determined for each trajectory, as the original motion model (8) assumes, there
will be no significant difference between positioning with the velocities known at the initial time
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instant and positioning with the velocities given by the identification estimates. This is explained
in Figs. 5a and 5b, showing that the filter produces an acceptable estimate of the current velocity
rather quickly. In addition, the motion model (8) yields a fairly accurate prediction using the
average velocity as well; under the assumption of no time delays, the velocity does not affect the
positioning quality at all, although there is the possibility to identify it.

The time-averaged mean deviations were used as an objective measure of the positioning quality

(averaging over 1000 steps, 6 min). For example, for the analysis of x̂(t), σ
(2)

x̂
= 1

1000

∑1000
t=1 σx̂(t)

were calculated to compare σx̂(t) with the theoretical accuracy σ
(1)

x̂
= 1

1000

∑1000
t=1

(
K̂t

)1/2

11
. The

values of σ
(1)

v̂x
= 1

100

∑1000
t=901

(
K̂t

)1/2

44
and σ

(2)

v̂x
= 1

100

∑1000
t=901 σv̂x(t), etc. (the mean deviations of the

estimates at the last hundred steps) were determined to analyze the identification results. Here,
the superscripts (1) and (2) indicate the deviation computed on the first (the theoretical accuracy)
and second (the factual accuracy) sample, respectively, and the subscript denotes the estimate. All
results are combined in the table; the most interesting ones, illustrating the highest and lowest
precision estimates, are set off in bold.

6. CONCLUSIONS

Of course, supplementing the model with random time delays [5, 6] with the unknown parameters
to be identified has complicated the technical implementation of estimation algorithms. Even
a reliable approach involving the concepts of conditionally optimal and conditionally minimax
filtering suffers from certain difficulties. This is the first important conclusion from the results
presented in the table above. Reproducing the Kalman filter structure, the typical filter essentially
turns out to be unworkable. Interestingly, in the models without delays, both the filter based on the
residual and the filters of more complex structure cope equally well with positioning (estimation of
the position coordinates) and identification (estimation of the velocity). Actually, in the case of no
time delays in observations, the CMNF works equally with any structure and provides very good
estimation accuracy.

The second remark should be made regarding the concept of pseudomeasurements [15]. The
fact that this approach would give a workable CMNF structure in the model with delays did not
initially seem obvious. Its ability to compete with a purely geometric solution was all the more
questionable. As the result of this study, we have obtained quite competitive estimates in terms
of accuracy; in the identification problem, the CMNF with the pseudomeasurement structure even
outperforms the geometric filter. Moreover, the geometric solution cannot be obtained in several
cases, and increasing the number of observers will lead to an exponential growth of the dimensions.
At the same time, the concept of linear pseudomeasurements has a universal character, applies to
any DOA sensors, and is much easier to implement.

Finally, the third remark concerns the interpretation of the identification results. On the one
hand, using the Monte Carlo method, one cannot expect the convergence of estimates in a numerical
experiment. On the other hand, the Bayesian approach to parameter estimation and the CMNF
properties do not imply convergence in a finite time, only ensuring that the estimation quality
will improve from step to step. The real deviation of the velocity estimate turns out to be about
1 km/h; for the coordinates x and y with the initial velocity of 5 km/h and 6 min observations,
this result seems to be good. The velocity along the Oz axis is poorly estimated, but it has a much
smaller effect on positioning accuracy. Thus, the fundamental possibility of identifying the velocities
without direct measurements, such as Doppler sensors, has been confirmed by the experiment.
Velocity measurements can further improve the accuracy of both motion model identification and
AUV positioning.
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